Shetkari Shikshan Prasarak Mandal's KRISHNA MAHAVIDYALYA RETHARE BK.

Department of Physics PROGRAM SPECIFIC OUTCOMES AND

COURSE OUTCOMES
FOR OUTCOME-BASED EDUCATION
ACADEMIC YEAR
2017-2018

Shetkari Shikshan Prasarak Mandal's

KRISHNA MAHAVIDYALAYA, RETHARE BK

DEPARTMENT OF PHYSICS

PROGRAMME OUTCOMES

Academic Year 2017-2018

After completion of the B. Sc programme, the students will develop ability:

- **A.** The B.Sc Programme develops an insight into scientific inquisitiveness among students.
- B. It increases scientific temperament and attitude among science graduates.
- **C.** It creates a systematic method of study ie. Observation, Experiment, and Conclusion which is a basic principle of scientific research.
- **D.** The qualities of a science observation, precision, analytical mind, logical thinking, clarity of thought and expression, systematic approach, and qualitative and quantitative decision making are enlarged.
- E. The program also empowers the graduates to appear for various competitive examinations or choose the postgraduate programme of their choice.
- F. It trains the learners to extract information, formulate a scientific method of study and solve problems in a systematic and logical manner
- **G.** This programme enables the learners to perform jobs in diverse fields such as agriculture, industries, engineering, survey, education, banking, development-planning, business, public service, self-business, etc, efficiently.
- **H.** The programme also helps the students to perform their carrier in the field of basic and applied research.
- I. Understood the basic concepts, fundamental principles, and scientific theories related to various scientific phenomena and their relevancies in today's life.

After completion of the programme, the students will develop ability:

Shetkari Shikshan Prasarak Mandal's

KRISHNA MAHAVIDYALAYA, RETHARE BK DEPARTMENT OF PHYSICS

PROGRAMME SPECIFIC OUTCOMES

Academic Year 2017-2018

- **PSO-A:** To understand the core-knowledge of Physics and the basic concepts which help them in understanding physical phenomenon in nature.
- **PSO-B:** It Identifies their area of interest and further specialization in the subject and develops skills and competencies to conduct scientific experiments related to Physics.
- **PSO-C:** The study inculcates a rigorous understanding of the core theories & principles of physics, which includes mechanics, electromagnetism, thermodynamics, & quantum mechanics.
- **PSO-D:** It helps to understand the set of physical laws, describing the motion of bodies, under the influence of the system of forces.
- **PSO-E:** It provides knowledge about material properties and their application for developing technology to solve society's problems.
- **PSO-F:** To learn the structure of solid materials & their different physical properties along with metallurgy, cryogenics, electronics & material science.
- **PSO-G:** To understand the fundamental theory of nature & levels of atom & sub-atomic particles.
- **PSO-H:** It provides advanced knowledge and skills for technical work in industries along with their knowledge and skills in carrying out independent work.

Shetkari Shikshan Prasarak Mandal's

KRISHNA MAHAVIDYALAYA, RETHARE BK

DEPARTMENT OF PHYSICS

PHYSICS COURSE OUTCOMES

Academic Year 2017-2018

B.Sc. (Physics)

Annexure-C

Course Outcomes: B.Sc. I Paper I: (Mechanics and Properties of matter)

By the end of this Course students should be able to know about:

- CO1. Different types of motions in nature, laws of motion, differences between translational motion and rotational motion
- CO 2. Different types of pendulums.
- CO 3. Concept of gravitation and motion under central force.
- CO 4. Various elastic constants and properties of elasticity.
- CO 5. Surface tension and their applications.
- CO 6: Various Concepts of fluid dynamics and viscosity.

B.Sc. I Paper II: Oscillations, Waves and Optics

By the end of this Course students should be able to know about:

- CO 1. Damped oscillations and their types.
- CO 2. Different types of waves and use of waves in general life.
- CO 3. Production of ultrasonic waves and their applications.
- CO 4. Geometric optics and optical instruments.
- CO 5. Concepts of interference and diffraction.

Paper III: Kinetic theory of gases, Heat and Thermodynamics

By the end of this Course students should be able to know about:

- CO 1. General information on various types of gases and theories related to them.
- CO 2. Transport Phenomena in the case of gas.

- CO 3. Thermodynamic state and equilibrium, adiabatic and isothermal process.
- CO 4. Concept of entropy and Carnot cycle.

Paper IV: Electricity, Magnetism and Basic Electronics

By the end of this Course students should be able to know about:

- CO 1. Polarization of dielectrics and electric susceptibility.
- CO 2. Resistor, inductor and capacitor in A.C. circuit.
- CO 3. Concept of Ballistic Galvanometer.
- CO 4. The intensity of magnetization (I), Magnetic Induction (B), Hysteresis.
- CO 5. Thevenin's and Norton's network theorems.
- CO 6. Use of semiconductor diodes in rectifiers and filter.
- CO 7. Various aspects of transistor amplifiers.

Paper V: General Physics, Sound and Acoustics

By the end of this Course students should be able to know about:

- CO 1. Vectors and its related theorems.
- CO 2. Concept of precessional motion.
- CO 3. Nature of elasticity and viscosity.
- CO 4. Concept of Sound and acoustics of buildings.

Paper VI: Electronics and Semiconductor Devices

By the end of this Course students should be able to know about:

- CO 1. Construction, working and principle of cathode ray oscilloscope.
- CO 2. Different types of oscillator circuits.
- ${\tt CO~3.~Concept~of~operational~amplifier.}$
- CO 4. Various aspects of digital electronics
- CO 5. Construction, working and characteristics of UJT.
- CO 6. Structure, working principle and applications of FET and JFET.

Paper VII: Optics and Lasers

By the end of this Course students should be able to know about:

- CO 1. Lenses and various cardinal points.
- CO 2. Fabry-Parot interferometer and Michelson's interferometer.
- CO 3. Concept of diffraction of light.
- CO 4. Optical fibers, their types, and applications.
- CO 5. Resolving the power of different optical instruments.
- CO 6. LASERS and applications in various fields.

Paper VIII: DSC- D2 - WAVES AND OPTICS-II

By the end of this Course students should be able to know about:

- CO 1. Special relativity and its consequences.
- CO 2. Concept of wave-particle duality with reference to De Broglie waves.
- CO 3. Vector atom model and quantum numbers.
- CO 4. -rays and various phenomenon related to X-rays.
- CO 5. Nuclear energy sources, nuclear fission, and fusion.

Paper IX: Mathematical and Statistical Physics

By the end of this Course students should be able to know about:

- CO 1. Study of different coordinate systems.
- CO 2. Differential equations and their applications.
- CO 3. Experimental study of the Black body radiation spectrum.
- CO 4. Basic concepts in statistical physics and MB, BE, and FD statistics.

Paper X: Quantum Mechanics

By the end of this Course students should be able to know about:

- CO 1. Interpretation of wave fiction and Schrodinger's wave equation
- CO 2. Quantum mechanical treatment of particles in a rigid box.
- CO 3. Schrodinger's equation for the hydrogen atom
- CO 4. Significance of quantum numbers.
- CO 5. Various operators in quantum mechanics.

Paper XI: Classical Mechanics

By the end of this Course students should be able to know about:

- CO 1. Study of mechanics of particle and system of particle.
- CO 2. Coriolis force and effect of Coriolis force in nature
- CO 3. Applications of Long-range equations
- CO 4. Study of techniques of calculus of variation
- CO 5. The motion of a rigid body in space

Paper XII: Atomic and Molecular Spectra, Astronomy and Astrophysics

By the end of this Course students should be able to know about:

- CO 1. Doublet fine structure and electron spin-orbit interaction
- CO 2. Effect of magnetic field on atomic spectra
- CO 3. Study the Raman effect and its classical theory.
- CO 4. Study of the origin of the solar system.
- CO 5. Evidence of geological activities.

Paper XIII: Nuclear and Particle Physics

By the end of this Course students should be able to know about:

- CO 1. Need of accelerators and principal, construction, and working conditions of accelerators.
- CO 2. Study of principal, construction, and working conditions of the nuclear detector.
- CO 3. Study of the nucleus and its properties.
- CO 4. Origin of cosmic rays and their types.

Paper XIV: Energy Studies and Material Science

By the end of this Course students should be able to know about:

- CO 1. Classification of energy resources and their alternatives.
- CO 2. Solar energy from the satellite power station.
- CO 3. Study of impurities in solids and defects in solids.
- CO 4. Study of superconductivity.
- CO 5. Introduction of nanoscience and nanotechnology

Paper XV: Electrodynamics and Electromagnetic Waves

By the end of this Course students should be able to know about:

- CO 1. Study of electrostatics and motion of charge particle.
- CO 2. Electromagnetic inductions and their applications.
- CO 3. Maxwell's equations and their physical significance.
- CO 4. Study of skin depth conservation of energy in electromagnetic fields.

Paper XVI: Solid-State Physics

By the end of this Course students should be able to know about:

- CO 1. Study of crystalline and non-crystalline solids.
- CO 2. Study of X-ray diffraction method.
- CO 3. Elastic vibrations of the diatomic mono-atomic lattice
- CO 4. Solid state devices and their applications.

CO 5. Study of metal semiconductors and insulators

DEPARTMENT OF PHYSICS
KRISHNA MAHAVIDYALAYA,
Rethare Bk; Shivnagar - 415108

Mahanayar Arshon are una day a are una day are una day

Principal Krishna Mahavidyalaya, Rethare Bk, Tal. Karad: 415 108 (M.S)